
Lecture 6: October 1
Git, PRs, CI/CD, Team Charter (Writing 1)

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

September Sprint Grading Criteria

Total Sprint Progress: 20% (September: 4%)

- Sprint Board
- Tickets created for class assignments + project requirements
- Tickets addressed as “done”, “won’t do”, or moved to next sprint

- Weekly Status Updates
- Status update is posted weekly and on time

- Assignments (student info form, project proposal, etc)
- Assignments submitted on time

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

Month Expected Status Monthly Focus Deliverables

September N/A
- Figure out teams
- Brainstorm projects

- Create teams
- resume

Mid-September
- Teams selected
- Handful of project ideas

- Final project selection
- Begin meeting w/ mentors

- Project proposal
- Hardware/software request
- Writing: Team Charter

October - Project selected & approved

- Begin technical investigations (services, apis, language, etc)
- Flesh out project functionality & requirements
- Coding should start (scaffolding, ci/cd, prototyping)

- Writing: Technical summary
- Presentation: Elevator pitch

November

- Main technologies selected
- project is well-defined
- Everyone is actively coding

- Answer all questions needed to complete TDD
- Lot's of coding for alpha review

- Writing: PRD/TDD
- Presentation: Project Design

December - Code complete for alpha review
- more coding for demo 2
- Formalize design discussions into proper TDD

- Alpha review
- Presentation: Alpha prototype
- Writing: revised PRD/TDD

January
- Continued focus on project
development

- continued development for demo 2
- focus on proper testing & integration

- Website Design
- demo 2

February - Code complete for demo 2

- Refine code from a prototype into a fleshed out project -- testing,
integration, polishing
- continued development for prelim prototype (get as close to finished
as you can here)

- Presentation: skill refinement
- demo 3

March - Code complete for demo 3

- final code polishing to wrap up project
- complete any necessary integration work
- add extra features if possible - demo 4

April
- Code 99% complete for final
demo

- finishing touches for final project submission
- ideally you are done with coding by this point

- Final demo
- Presentation: Final demo

May - Final package due

Month Expected Status Monthly Focus Deliverables

September N/A
- Figure out teams
- Brainstorm projects

- Create teams
- resume

Mid-September
- Teams selected
- Handful of project ideas

- Final project selection
- Begin meeting w/ mentors

- Project proposal
- Hardware/software request
- Writing: Team Charter

October - Project selected & approved

- Begin technical investigations (services, apis, language, etc)
- Flesh out project functionality & requirements
- Coding should start (scaffolding, ci/cd, prototyping)

- Writing: Technical summary
- Presentation: Elevator pitch

November

- Main technologies selected
- project is well-defined
- Everyone is actively coding

- Answer all questions needed to complete TDD
- Lot's of coding for alpha review

- Writing: PRD/TDD
- Presentation: Project Design

December - Code complete for alpha review
- more coding for demo 2
- Formalize design discussions into proper TDD

- Alpha review
- Presentation: Alpha prototype
- Writing: revised PRD/TDD

January
- Continued focus on project
development

- continued development for demo 2
- focus on proper testing & integration

- Website Design
- demo 2

February - Code complete for demo 2

- Refine code from a prototype into a fleshed out project -- testing,
integration, polishing
- continued development for prelim prototype (get as close to finished
as you can here)

- Presentation: skill refinement
- demo 3

March - Code complete for demo 3

- final code polishing to wrap up project
- complete any necessary integration work
- add extra features if possible - demo 4

April
- Code 99% complete for final
demo

- finishing touches for final project submission
- ideally you are done with coding by this point

- Final demo
- Presentation: Final demo

May - Final package due

Sprint Goals

September Sprint: What problems do we want to solve?

- Project definition
- Technical & algorithmic requirements

October Sprint: What solutions will solve these problems?

● What language
○ Front end or backend
○ iOS or Android
○ Web App or Mobile App

● What algorithms
○ What algorithms am I building?
○ What algorithmic theory applies here?

● What APIs
○ What libraries, databases, or programs do I need to connect to in order to build my solution?
○ API Documentation - good example of technical documentation

October Schedule

Date Lab Assignments

10/1 Git, PRs, CI/CD, Team Charter Writing 1 (10/5)

10/8 Writing 1 feedback, Project Design & UX Presentation 1 (10/15)

10/15 Presentation 1

10/22 NO LAB (focus time) Writing 2 (10/26)

10/29 Graduation workshop Presentation 2 (11/5)

Week of 11/3: “Demo 0” (individual progress check-in w/ instructor)

October Sprint Progress Rubric

Minimal credit

- Few tickets addressed as either “done”, “won’t do”,
or moved to next sprint.

- Minimal standup updates & rare participation
- Minimal code is committed, PRs are missing or not

well-scoped.

No credit

- No sprint board activity
- No standup updates
- No slack participation
- No code committed to main

Fall Semester

Full credit

- Tickets addressed as either “done”, “won’t do”, or
moved to next sprint.

- Weekly standup updates & slack participation
- Code is PRed & merged to main. Branches & PRs

are well-scoped. PRs are linked to tickets.

Partial credit

- Majority of tickets addressed as either “done”,
“won’t do”, or moved to next sprint.

- Occasional standup updates & moderate
participation

- Code is committed, PRs are sometimes present and
sometimes well-scoped. PRs are sometimes linked
to tickets.

Expectations: Sprint Board

- Create tickets to capture class assignments (writings, presentations, etc)
- Create tickets to capture project-specific work

- Create project-specific epics to organize work

- Tickets should include:
- Descriptions & Deliverables
- Assignees
- Due dates
- Sprint
- Status
- Linked PR (when there is code)

- All tickets should be completed, moved to next sprint, or marked as
“won’t do” by the end of the sprint

Expectations: Weekly Status Updates

- Create a new status update ticket for each week
- Title should be Status Update - Week of MM/YY with the date matching the Monday

date on the course website
- Due date should be the following Sunday
- Epic should be status update

- Move ticket from TODO to DONE as week progresses
- Students should post weekly status updates covering:

- What they completed (can link to other tickets)
- What they are blocked by
- What they are currently working on
- Each student must leave their own comment (do not update the description) before

the due date to receive full credit

Recommendation: Create all status update tickets at the beginning of
the sprint

Example Weekly Status Update

https://github.com/GW-CS-SD-24-25/sd-ofaf/issues/34

Expectations: Code

- All students should contribute code during the October Sprint
- Code should be pushed to feature branches and PRed to main
- Link PRs to tickets if possible
- Initial CI/CD pipelines are required by the end of October
- We will only evaluate code pushed to main

Example Ticket w/ Linked PR

https://github.com/GW-CS-SD-24-25/sd-ofaf/issues/33

End of October: “Demo 0”

- During instructor meetings the week of 11/3, students will meet
individually with their instructor to review individual code & sprint
progress

Use “Demo 0” as your milestone for the October sprint

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

Git

Git Workflow Diagram

Git Workflow Diagram for Senior Design

Developing a feature

git checkout main && git pull
git checkout -b js-my-feature
git push -u origin js-my-feature

(code changes)
git add .
git commit -m “made changes”
git push

git checkout main && git pull
git checkout js-my-feature
git merge main (may need to resolve merge conflicts)
git push
(open PR)

Git Resources

- ChatGPT
- https://dangitgit.com/en
- https://www.atlassian.com/git/tutorials/using-branches
- https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-ed

itor

https://dangitgit.com/en
https://www.atlassian.com/git/tutorials/using-branches
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor
https://code.visualstudio.com/docs/sourcecontrol/overview#_3way-merge-editor

PR Reviews

Purpose of Code Reviews

- Ensure that team members are aware of changes to the codebase
- Allow others to verify the correct things are being tested
- Facilitate discussions over implementation design

The overall code health should be improving over time, and developers should
make progress on their tasks

Reviewers should favor approving PRs once its in a state where it
improves code health, even if the PR isn’t perfect

Authoring a Pull Request

- A single PR should represent a single piece of functionality
- Multiple PRs with small changes is better than one PR with lots of changes
- The description should include what changed and why the change is

necessary
- Add pr comments to code changes to help reviewers navigate the diff
- Link PR to sprint task
- If the PR is large or complicated, meet with the reviewers to discuss

Example PRs

Reviewing a Pull Request

Goal: Ensure the changes are positive, even if they aren’t perfect

- Mountain: feedback that blocks all related work and requires immediate
action

- Boulder: feedback that blocks the work from being approved, but doesn’t
require immediate action

- Pebble: feedback that does not block the PR, but requires future action
- Sand: feedback that is not blocking, but should be considered if multiple team

members concur.
- Dust/nit: feedback that is more a suggestion and not required

https://www.netlify.com/blog/2020/03/05/feedback-ladders-how-we-encode-code-reviews-at-netlify/

Code Reviews for Senior Design

- Team members should not push directly to main
- Team members should try to review each other’s code
- While mentors should not be reviewing all code changes, ask them to do a

PR review sometime this semester!
- PRs do not need to be blocked by approvals

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

Continuous Integration & Deployment

- Continuous Integration is a practice that involves frequently and automatically
integrating code changes into a shared repository. The core idea is to detect
and address integration issues early in the development process.

- Unit tests, integration tests, linting. Blocks merging bad code. Frees up developers from
manually testing

- Continuous Deployment is an extension to CI that automates the deployment
process. It means every code change that passes CI tests is automatically
deployed without manual intervention.

- Builds artifacts, deploys to staging and/or prod environments

Example CI/CD Pipeline

- Run the CI step on every push
- Gate merges on CI step

- Run the deploy step on every push to main
- Gate deploy step on CI step

CI/CD Tools

- Circle CI, Travis, Jenkins, Argo, Codefresh, Spinnaker
- Github Actions

- Free!
- Easy to configure as part of your github repo

Example Github Action Pipeline

CI/CD for Senior Design

- Having a CI/CD pipeline is a requirement
- Setup a minimal version during your October sprint!

- Use github actions for CI/CD execution
- Recommended CI steps (on every push):

- Lint code
- Run tests
- Build artifacts (to validate they can be built)

- Recommended CD steps (on merges to main or manual trigger):
- Build artifacts
- Deploy changes

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

Presentation 1: Elevator Pitch

● Due Date: 10/15
● Goal

○ Convince us that what you are building is a great idea, and that you have a way to make it
a reality

○ Build off of project proposal
○ Audience: non technical (investors, upper management, etc)

● Requirements
○ 4 minutes long + 2 mins for questions
○ What are you building and why? Who are you users? What are the goals? How is it

different from current products/research?
○ Be prepared to answer non-technical questions
○ Grade is primarily based on presentation skills!

Upload slides to shared google drive prior to presentation day

https://gw-cs-sd-25-26.github.io/lectures/Presentations-Rubric.pdf
https://drive.google.com/drive/u/0/folders/1cq-iLQDl03L5APi6hLvhvaHdq8VWmko6

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

For Next Week

Weekly Focus

- Plan out your sprint – what do you want to accomplish by “demo 0”

Mentor Meetings

- [Team]: October sprint planning

Deadlines

- [Team]: Writing 1 - Team Charter (Oct. 5)
- [Individual]: September team progress form (Oct. 5)
- [Team]: Presentation 1 (Oct. 15)

Reminders

- Don’t forget to post weekly updates

https://gw-cs-sd-25-26.github.io/lectures/writing.html
https://forms.gle/KmEaMRkmywPkwzj88

Agenda

● September Sprint Reminders

● October Sprint Planning

● Git / PR Reviews

● CI/CD

● Presentation 1

● For next week

● Writing 1: Team Charter

Team Charter: What is it?

- What: A formal document that defines the team’s mission, scope of
operation, objectives, and participants’ roles and responsibilities

- Why: Establishes clear expectations and guidelines for team collaboration

Importance of Team Charters

- Aligns team members on project goals and expectations
- Clarifies roles and responsibilities
- Establishes communication protocols
- Helps prevent and resolve conflicts
- Increases team accountability

Components of a Team Charter

1. Project Summary
2. Goals and Objectives
3. Roles and Responsibilities
4. Communication Guidelines
5. Decision Making Guidelines
6. Performance Standards
7. Resource Allocation
8. AI Use*

Project Summary

Summary of project written for a non-technical audience (investor, manager, research
supervisor). You should convince the reader that your project solves an important problem
and has an audience (users) or social purpose

Content:

- Customer: describe the expected customer, what needs or market pain points are you
addressing?

- Value proposition: what is the key differentiator of your product/technology?
- Innovation: What aspects are original, unusual, novel, disruptive, or transformative

compared to current state?
- Broader societal impact: is there a broader need you are trying to address?

Format: Multiple paragraphs, ~500 words

Goals & Objectives

- Brief technical description of team’s project, highlighting algorithmic &
technical complexity requirements

- Specific short and long term objectives

These can be taken from the project proposal slides

Roles & Responsibilities

- Clear definition of each team member’s role
- Specific responsibilities assigned to each role

- Project specific (frontend, backend, etc)
- Logistics: who creates weekly status tickets, who takes notes in meetings, etc

- Skills and strengths of team members

Ex:

- Backend developer: responsible for database design & api development
- Team lead: responsible for creating weekly tickets, running weekly

meetings, keeping team on track

Communication Guidelines

- Preferred communication channels (slack, in person, etc)
- Frequency and format of team meetings (as a team, w/ instructors, w/

mentors)
- Reporting and documentation standards (where do notes go?)

Ex: “weekly mentor meetings every Wednesday at 8pm via Zoom”

Decision Making Guidelines

- Agreed-upon method for making team decisions
- Voting procedures or consensus-building approaches
- Escalation process for unresolved decisions

Ex: “Major decisions require a majority vote. If no majority, we will reach out to
team mentor for guidance.”

Performance Standards

- Expectations for deliverables
- Time management and deadline adherence
- Code review and testing procedures
- Team member removal

Ex: “All code must pass tests and be reviewed by at least one other team
member prior to merging”

Resource Allocation

- Distribution of workload
- Time commitments expected from each member
- Shared resources and how to access them (hardware, compute, etc)

Ex: “Each team member commits to 10 hours per week on the project. Work is
assigned based on each member’s expertise and availability.”

AI Use

- What AI tools will you use as part of your project?
- How will you guarantee that you’ll maintain good code quality & shared

understanding when using these tools?

Ex: “We will use GitHub CoPilot and ChatGPT to assist in development. To
maintain code quality, we will ensure unit test coverage of 80%. If an AI tool
was used to generate code in a PR, this will be noted in the PR description or
as a comment on specific lines of code.”

Team Charter Grading

1. This is a team submission (on github)
2. Do not use AI tools for writing assignments
3. Writing 1 will be graded on content & writing skills. Refer to rubric
4. Project Summary will be graded with a focus on writing skills
5. Bullets are ok for some sections, but content should be grammatically

correct

https://gw-cs-sd-25-26.github.io/lectures/writing1-rubric.pdf

Team Charter Instructions

1. Download a copy of the team charter template
2. As a team, work together to fill in the template. Feel free to update as you

see fit.
a. All italicized sections need to be replaced
b. Be as specific and thorough as possible
c. This is a living document, edit as needed

3. Commit the charter to your github repo as team_charter.md
4. In a separate commit, each member should add their name to the

signature section.
5. Use the rest of lab to complete this, if you don’t finish it is due 10/5.

https://gw-cs-sd-25-26.github.io/lectures/team_charter.md

