Lecture 2: September 3
ML Project Design

ACM September GBM

When: Friday (9/5), 4:00 - 5:00 PM

Where: SEH B1270

Agenda

Senior Design High Level Timeline

Github Projects Setup & Sprint Progress Expectations
ML Project Design

Tech Lab Overview

Agenda

Senior Design High Level Timeline

Github Projects Setup & Sprint Progress Expectations
ML Project Design

Tech Lab Overview

Month‘

March

April
May

Expected Status

N/A

- Teams selected
- Handful of project ideas

- Project selected & approved

- Main technologies selected
- project is well-defined
- Everyone is actively coding

- Code complete for alpha review

- Continued focus on project
development

- Code complete for demo 2

- Code complete for demo 3

- Code 99% complete for final
demo

Monthly Focus Deliverables

- Create teams
- resume

- Figure out teams
- Brainstorm projects

- Project proposal
- Hardware/software request
- Writing: Team Charter

- Final project selection
- Begin meeting w/ mentors

- Begin technical investigations (services, apis, language, etc)
- Flesh out project functionality & requirements
- Coding should start (scaffolding, ci/cd, prototyping)

- Writing: Technical summary
- Presentation: Elevator pitch

- Answer all questions needed to complete TDD
- Lot's of coding for alpha review

- Writing: PRD/TDD

- Presentation: Project Design
- Alpha review

- Presentation: Alpha prototype
- Writing: revised PRD/TDD

- Website Design
- demo 2

- more coding for demo 2
- Formalize design discussions into proper TDD

- continued development for demo 2
- focus on proper testing & integration

- Refine code from a prototype into a fleshed out project -- testing,

integration, polishing - Presentation: skill refinement
- continued development for prelim prototype (get as close to finished - demo 3

as you can here)

- final code polishing to wrap up project
- complete any necessary integration work

- add extra features if possible -demo 4

- Final demo
- Presentation: Final demo

- finishing touches for final project submission
- ideally you are done with coding by this point

- Final package due

Agenda

Senior Design High Level Timeline

Github Projects Setup & Sprint Progress Expectations
ML Project Design

Tech Lab Overview

Sprint Progress - Components

Sprint Board
- Weekly Updates
Slack Participation
- Code

Components - Sprint Board

- Team members should create a backlog of tickets to work on
- At the beginning of each sprint, members should pull tickets from their backlog into their sprint
- Tickets should include the following:

- Description

- Assignee

- Epic

- Due date

- Sprint

- Status
- By the end of a sprint, all tickets should be done, won’t do, or moved to the next sprint
- All senior design work should be accompanied by tickets (including presentations & writings)
- Tickets should be appropriately scoped to single features/prs

- Sprint boards should be created / populated during monthly sprint planning

Create Github Project Boards

¢ & github.com

O GW-CS-SD-24-25 | sd-instructor_demo &

1l
<> Code () Issues [Pullrequests (») Actions [Projects [Wiki () Security

Welcome to projects

Built like a spreadsheet, project tables give you a live canvas to
filter, sort, and group issues and pull requests. Tailor them to
your needs with custom fields and saved views.

Learn more

[Projects ~

Q_ is:open (%] + New project & Link a project

o open 0 Closed

B

Provide quick access to relevant projects.

Add projects from your organization to view them here.

Create Github Project Boards

< & github.com

(’ GW-CS-SD-24-... P @jshapiro314's untitled project &

@jshapiro314's untitled project

M View1

Create project

Project templates
All templates
Featured

Featured

From your organization

Start from scratch
Table
Board Team planning - GitHub Feature release - GitHub

Manage your team' rk items, anage your team

Roadma
P plan upcoming cycles work items when planning for a

derstand tean ity ature release 3

From your organization

03 Senior Design Project Template

Create Github Project Boards

& & github.com

O GW-CS-SD-24-... Pr... @jshapiro314's untitled project &

@jshapiro314's untitled project
B View 1

< Create project

1
Senior Design Project Template Proiect name

Updated about 1 hour ago | <Team> Project Board

{5 Table View =[] September Sprint

["]] October Sprint [I'll November/December Sprint
Fields G Sprint | [5] Epic | 5] Due Date

P, Item closed P Pull request merged

Workflows
2, Auto-close issue

Insights

Create project

Create Github Project Boards

+

(¢ & github.com

= O GW-CS-SD-24-... | Proj... / Instructor Demo Project Board & Q

& Instructor Demo Project Board Add status update

[Table View '~ [September Sprint [T October Sprint [November/Decembe

= Filter by keyword or by field

Title sise Assignees °*°° Status oee Sprint
Status Update - Week of 9/29 Todo October
Status Update - Week of 9/22 Todo September
Status Update - Week of 9/15 Todo September

"+ Status Update - Week of 9/8 Todo September

" Status Update - Week of 9/1 Todo September

You can use | Control + Space | to add an item

n e @

+ New view

Epic

Status Update

Status Update

Status Update

Status Update

Status Update

Create September Tickets

Title Epic Due Date Assignees Sprint Status
Submit Writing 9/7 Individual September TODO
Resume

Draft Project Design 9/14 all September TODO
Proposal

Refined Design 9/21 all September TODO
Project

Proposal

HW/SW Design 9/21 all September TODO
Requests

Writing 1 Writing 10/5 all October TODO

Components - Status Updates

- Students should post weekly status updates covering:
- What they completed (can link out to tickets)
- What they are blocked by
- What they are currently working on
- Each student must leave their own comment
- Itis ok for the update to reflect no work
- These updates should be captured on Status Update tickets
- Move ticket from TODO to DONE as week progresses
- Leave comment BEFORE DUE DATE to receive credit
- Complete these updates prior to end of week (use to lead discussion w/ mentors &
instructors)

- Create new status update tickets as sprints progress

- Title should be Status Update - Week of MM/YY (monday)
- Due date should be following Sunday

Components - Slack / Participation

- Use slack as the main communication method between teammates and:
- Other teammates
- Mentors
- Instructors

Components - Code

- We expect all students to write code for senior design

- Only code pushed to main/master will be evaluated

- Code should be written in branches & PRed into master

- PR reviews are highly encouraged during the fall and required in the spring
- Code PRs should be well-scoped to single features and tied to sprint tickets

Sprint Progress Rubric

Fall Semester

Full credit Minimal credit

"o,

- Tickets addressed as either “done”, “won't do”, or
moved to next sprint.

- Weekly standup updates & slack participation

- Code is PRed & merged to master. Branches & PRs
are well-scoped.

- Few tickets addressed as either “done”, "won't do”,
or moved to next sprint.

- Minimal standup updates & rare participation

- Minimal code is committed, PRs are missing or not
well-scoped.

Partial credit No credit

- No sprint board activity

- No standup updates

- No slack participation

- No code committed to master/main

- Majority of tickets addressed as either “done”,
“won’t do”, or moved to next sprint.

- Occasional standup updates & moderate
participation

- Code is committed, PRs are sometimes present and
sometimes well-scoped

Sprint Schedule

Fall Semester Sprints
September Sprint
October Sprint

November / December Sprint

Spring Semester Sprints
January Sprint (2 weeks!)
February Sprint

March Sprint

April Sprint (2 weeks!)

Agenda

Senior Design High Level Timeline

Github Projects Setup & Sprint Progress Expectations
ML Project Design

Tech Lab Overview

A brief detour

—_

There are lots of ai-powered coding tools (cursor, copilot, chatgpt, claude, etc)

2. These tools can make it difficult to evaluate projects from the perspective of student
understanding.

3. These tools are now part of a software engineer’s toolkit

For Senior Design:

1. Use whatever Al tools you want, but please include them in your team charter

2. Our expectations are higher for what you need to accomplish

3. We want to see code understanding — PR reviews will be important to measure this

4. A word of caution — ai tools on shared codebases come with their own set of challenges.

Context

1. We anticipate many teams will explore some form of machine learning as part
of their senior design project

2. Implementing ML in a product is not easy. It's also not a skill set typically
taught in class.

3. These are the problems | focus on day to day, and I've found success in this
approach.

Goals

- Know when to apply ML to a problem
- Know how to build out an ML solution
- Understand what different ML roles in industry entail

Non-Goals

- Explain how to train models
- Explain how to productionize models

What makes an idea good for ML?

1. Can the problem be uniquely solved by ML?

a.
b.
C.

Can a human solve this task manually?
Does a rules-based approach work?
What are the existing bottlenecks to solving this problem?

2. Do you have data / can you get data?

3. The

a.
b.
C.

O test: can the user immediately the output?

Change the user
Make validation easier
Change the output format

https://cloudonair.withgoogle.com/events/startup-school-ai/watch?talk=emea-amer-talk2

Agenda

- How to tell if a problem is well-suited for an ML solution

- How to approach an ML solution (an ML Technical Design Doc)
- Defining the input/output
- What is your data
- What are the metrics
- Establishing baselines & benchmarks
- Model training/exploration
Approaching ML in Senior Design

- leferent roles in the ML field

Approaching an ML Solution: Inputs & Outputs

1. ldentify the interface of your product user experience

2. ldentify the interface of your ML model(s)
a. Whatis the input?
b. What is the output?

Why?

- Adds structure to ambiguity — can’t just lean on ML for scope creep

- Engineering is easier with interfaces. ML is hard, isolating from the rest of a
system is important.

- Your interfaces will dictate the data you need and the training approach you're
using (regression, classification, clustering, generation)

Approaching an ML Solution: Data

1. Do you have data that matches your input/output interface?

2. How costly is it to collect labelled data? Are there other ways of getting
“labelled” data?

3. Do you have/need unlabeled data?

4. What is your training/validation/test set?

5. What are the characteristics of your data? (amount, biases, etc)

Why?

- If you don’t have data, you're going to have a bad time.
- Figure out early if ML is not the right approach
- Data needs can change during experimentation

Approaching an ML Solution: Metrics

1. What offline “correctness” metrics do you care about?

2. Are there separate online metrics that are important?

3. Are there performance metrics that impact your solution?
4. What is the one metric that matters most?

Why?

- Need a way to objectively measure different approaches
- Need a way to evaluate a system once in production
- Forces you to focus attention on a small number of things to optimize

Agenda

- How to tell if a problem is well-suited for an ML solution

- How to approach an ML solution (an ML TDD)
- Defining the input/output
- What is your data
- What are the metrics
- Establishing baselines & benchmarks
- Model training/exploration
Approaching ML in Senior Design

- leferent roles in the ML field

Approaching an ML Solution: Human Performance

- Using the data & metrics defined previously, how does a human measure on
the task?
- What is needed to collect this data?

Why?

- Ensures you can evaluate your system
- Sets a bar for performance to aim for (higher precision, higher recall, faster)

Approaching an ML Solution: Quick Baseline

- What is the simplest approach we can take to solve this problem? (Almost
always logistic regression, xgboost, non deep learning or ml techniques)
- How does the simple approach measure up?

Why?

Helps build out pipeline for evaluation without focusing on experimentation
Can be used as a placeholder while building out the engineering system
Sets a minimum bar for performance

|dentifies the gap between humans & ml

Approaching an ML Solution: Upper Bound Baseline

- If compute/money was no object, how would we do? (Throw an LLM at the
problem)
- How does zero shot vs few shot affect results?

Why?

- Sets a pseudo-upper bound to expected ML performance
- Helps you understand tradeoffs between “accuracy” metrics & performance
metrics

Approaching an ML Solution: Experiment!

- You've done your homework, now train your own model

Custom
Model

: Upper

[ch_k } [Bound }[
Baseline :
Baseline

Human
Performance

|

ML in Senior Design

- ldentify if ML is the right solution to your problem

- It is not enough to integrate ML into your solution — you must be able to
explain why it is necessary / how much it helps

- Creating a full eval pipeline can be time consuming. Up to your team whether
or not this is something worth prioritizing.

Agenda

- How to tell if a problem is well-suited for an ML solution

- How to approach an ML solution (an ML TDD)
- Defining the input/output
- What is your data
- What are the metrics
- Establishing baselines & benchmarks
- Model training/exploration
- Approaching ML in Senior Design

- Different roles in the ML field

Roles in the ML field

Publishing Applied Product ML Deploying
Research Research Experiments Products
. < - - - - >
N ~) Y 4 I!
:
Research . Engineer
Scientist Research ML Engineer

Engineer

Research Scientist

Expectations:

- Publish papers
- Create patents
- Novel ideas 1-2 years out

Challenges:

- Running lots of experiments & analyzing
results

- Getting eng / infra help for
experimentation

- Compute

- Working with teams to get data

Teams:

- Research engineers
- ML engineers
- Data science

Time Breakdown

@ Reading Papers
Running Experiments
Publishing / Conferences

@ Building experiment tooling

Research Engineer

Expectations:

- Make experimentation easier
- Novel ideas 6-12 months out
- Publish papers/patents

Challenges:

- Build infra for research scientists
- Act as liaison between ml & research

Teams:

- Research scientists
- ML engineers

- Data science

- Product

Time Breakdown

@ Reading Papers

© Running Experiments
Publishing / Conferences

@ Building experiment tooling

@ Product Engineering

ML Engineer

Expectations:

Productionize applied research

Build ml services

Short-term experiments (1-2 months out)
Monitor ml services

Challenges:

Convert product ideas to ml problems
Identify how to safely deploy ml models

Teams:

Research engineers
Data science
Product engineers
Product

Time Breakdown

@ Reading Papers

" Running Experiments

@ Building experiment tooling
@ Product Engineering

Tools & Technologies used

Programming Languages: Python, C++, Cuda

ML Frameworks: PyTorch, Jax, sklearn

Common Libraries: Hugging Face, Pytorch Lightning, Pandas, Numpy
Experiment Tracking: Weights & Biases, MLFlow, Tensorboard

Other Technologies: Docker, Kubernetes, SQL, Airflow/Prefect

Agenda

Senior Design High Level Timeline

Github Projects Setup & Sprint Progress Expectations
ML Project Design

Tech Lab Overview

Tech Labs

e You'll likely be using technologies you aren’t familiar with to complete your SD
project

e [t can be difficult knowing where to start and finding time to go through
introductory tutorials

e Individuals usually run into similar problems with setup, but hit them at
different times during the project.

e Setting up your development environment can take time, this forces you to do
so early on in the semester.

You’ll spend next week’s lab choosing a high-level topic to focus on, and
spend a few hours completing a tutorial.

Tech Labs - Requirements

1. You can work on these labs together, but each student must submit their own
code

2. [Each team must complete at least 2 different tutorials (not everyone can work
on the same thing)

3. You can choose one of the suggested topics, or choose your own

Tech Labs - Topics

1. Backends:
a. Python backend web app (django, flask, fastapi)
b. Node.js / Express.js

2. Frontends:

a. React
b. i0S
c. Android
3. ML
a. Google Colab
b. Pytorch
c. sklearn

4. loT, Raspberry Pi, Arduino

Tech Labs - Python Web Apps

Common python frameworks for creating backends

1. Django
- Full-featured all-in-one web framework. Includes ORM, authentication,
admin Ul, etc
- Suitable for complex web applications, but comes with a steep learning
curve
2. Flask
- Lightweight library good for rapid development
- Lacks a ton of built-in features, relies on additional extension libraries
3. FastAPI
- Modern, asynchronous python framework good for rapid prototyping
- Relies on type annotations for I/O interface, self-documenting
- Relatively new, might lack mature solutions

Tech Labs - Python Web Apps

Choose a framework and complete at least the first tutorial
1. Django

- https://docs.djangoproject.com/en/5.0/intro/tutorial01/ (parts 1-4)

- https://code.visualstudio.com/docs/python/tutorial-django
2. Flask

- https://flask.palletsprojects.com/en/3.0.x/tutorial/
- https://code.visualstudio.com/docs/python/tutorial-flask
3. FastAPI
- https://fastapi.tiangolo.com/tutorial/ (basic & advanced tutorial)
- https://www.tutorialspoint.com/fastapi/index.htm
- https://code.visualstudio.com/docs/python/tutorial-fastapi

https://docs.djangoproject.com/en/5.0/intro/tutorial01/
https://code.visualstudio.com/docs/python/tutorial-django
https://flask.palletsprojects.com/en/3.0.x/tutorial/
https://code.visualstudio.com/docs/python/tutorial-flask
https://fastapi.tiangolo.com/tutorial/
https://www.tutorialspoint.com/fastapi/index.htm
https://code.visualstudio.com/docs/python/tutorial-fastapi

Tech Labs - Node.js / Express.js

If you're familiar with javascript, you can write your backend in javascript as well
Node.js: javascript runtime allowing developers to run javascript server-side

Express.js: a minimal, flexible web app framework for Node.js

Choose one of the following (do both if you have time)

- https://codexam.vercel.app/docs/project/xt/xt1
- https://codexam.vercel.app/docs/project/mernchat (fullstack + db + react)

https://codexam.vercel.app/docs/project/xt/xt1
https://codexam.vercel.app/docs/project/mernchat

Tech Labs - Front Ends

React: common front end for web-apps, written in javascript

I0S: mobile operating system in the Apple ecosystem. Defines a framework
for developing mobile apps, written in Swift. Used for frontend, can also be
used for backend.

Android: mobile operating system from Google. Defines a framework for
developing mobile apps. Used for frontend, can also be used for backend.

Tech Labs - Front Ends

- React: (choose one, do both if you have time)

- https://react.dev/learn/tutorial-tic-tac-toe

- https://www.freecodecamp.org/news/react-tutorial-build-a-project/

- https://codexam.vercel.app/docs/project/mernchat (fullstack + db + react)
- i0S: (complete the first, get as far as you can in the second)

- https://www.swift.org/getting-started/swiftui/ (focused on swift ui)
- https://developer.apple.com/tutorials/app-dev-training (thorough but very long, won't finish)

- Android:

- https://developer.android.com/get-started/overview

https://react.dev/learn/tutorial-tic-tac-toe
https://www.freecodecamp.org/news/react-tutorial-build-a-project/
https://codexam.vercel.app/docs/project/mernchat
https://www.swift.org/getting-started/swiftui/
https://developer.apple.com/tutorials/app-dev-training
https://developer.android.com/get-started/overview

Tech Labs - ML

Complete the intro to Google Colab tutorial. Then choose at least one of the pytorch
tutorials OR the sklearn tutorials.

- Google Colab: web-based jupyter notebook that provides free access to gpu
compute
- https://colab.research.google.com/# (intro to colab)
- Sklearn: library providing non-deep learning ml algorithms + training utilities
- https://colab.research.google.com/qithub/jakevdp/PythonDataScienceHandbook/blob/master/noteboo
ks/05.02-Introducing-Scikit-Learn.ipynb
- PyTorch: library for deep learning commonly used in industry
- https://pytorch.org/tutorials/beginner/basics/intro.html
- https://pytorch.org/tutorials/beginner/deep learning 60min_blitz.html
- https://colab.research.qgoogle.com/qithub/phlippe/uvadic notebooks/blob/master/docs/tutorial noteboo
ks/tutorial?2/Introduction to PyTorch.ipynb

- Datascience handbook: useful resource on ml & datascience as a whole
- https://github.com/jakevdp/PythonDataScienceHandbook/tree/master

https://colab.research.google.com/#
https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.02-Introducing-Scikit-Learn.ipynb
https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.02-Introducing-Scikit-Learn.ipynb
https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://colab.research.google.com/github/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial2/Introduction_to_PyTorch.ipynb
https://colab.research.google.com/github/phlippe/uvadlc_notebooks/blob/master/docs/tutorial_notebooks/tutorial2/Introduction_to_PyTorch.ipynb
https://github.com/jakevdp/PythonDataScienceHandbook/tree/master

Tech Labs - 1oT / Raspberry Pi / Arduino / etc

- Any tutorials with a hardware component. Bring your own hardware and we’re
happy to help!

- Arduino: https://docs.arduino.cc/built-in-examples/
- Raspberry Pi: https://tutorials-raspberrypi.com/
- ROS: robotic operating system — used as part of the RTX projects
- https://www.youtube.com/watch?v=9791ZWOXC_0&list=PL8MgIDIMCju0GMQDTWzYmfiU3w

Y_Zdjl5
- https://www.youtube.com/playlist?list=PLy9nL DKxDN683GqgAiJ4IVLquYBod_20A6

https://docs.arduino.cc/built-in-examples/
https://tutorials-raspberrypi.com/
https://www.youtube.com/watch?v=979IZWOXC_0&list=PL8MgID9MCju0GMQDTWzYmfiU3wY_Zdjl5
https://www.youtube.com/watch?v=979IZWOXC_0&list=PL8MgID9MCju0GMQDTWzYmfiU3wY_Zdjl5
https://www.youtube.com/playlist?list=PLy9nLDKxDN683GqAiJ4IVLquYBod_2oA6

For Next Week

- Complete weekly status update (get into the habit, it's ok if you don’t have
much to report)

- Create September sprint tasks that would be useful for your project

- Submit Resume (blackboard)

- Continue refining project ideas

- Schedule weekly meeting w/ instructors (google sheet to be posted EOW)

- Decide which tech lab(s) you'll focus on next week

